1-Pyrrolidin-1-ylbuta-1,3-dienes as Potential 1,5-Dipoles; Synthesis of Pyrrolizines

Germ W. Visser, Willem Verboom, Piet H. Benders, and David N. Reinhoudt*

Laboratory of Organic Chemistry, Twente University of Technology, P.O. Box 217, 7500 AE Enschede, The Netherlands

Tautomerization of 1-pyrrolidin-1-ylbuta-1,3-dienes and (hetero)aromatic compounds formally containing this moiety, to the corresponding 1,5-dipoles by a concerted [1,6] hydrogen shift is followed by a 1,5-electro-cyclization to give pyrrolizine derivatives.

The *in situ* generation of 1,3-dipoles by prototropic equilibration of oxazolinones,¹ imines of α -amino-acid esters,² and arylhydrazones³ and the subsequent intra- or inter-molecular reaction with 1,3-dipolarophiles provides a versatile method for synthesis of 5-membered heterocycles. We now report a synthesis of pyrrolizine derivatives which involves the tautomerization of 1-pyrrolidin-1-ylbuta-1,3-dienes to the corresponding 1,5-dipoles by a concerted [1,6] hydrogen shift, followed by a 1,5-dipolar cyclization.

Previously we have reported that reactions of 3-pyrrolidin-1-ylthiophens and pyrrolidine enamines with electrondeficient acetylenes like dimethyl acetylenedicarboxylate (DMAD) in protic solvents yield pyrrolizine derivatives instead of the cyclobutenes that are formed in apolar solvents.⁴ Recently, in the reaction of the pyrrolidine enamine of α - tetralone⁵ and DMAD in methanol at -7 °C, we observed two transient singlet ¹H n.m.r. absorptions of unequal intensities at δ 6.33 and δ 5.95, respectively, which we assigned to the *E*- and *Z*-isomer of the Michael adduct (1).⁶ After a prolonged reaction, however, we isolated only the pyrrolizine (2) in a yield of 89%.⁴⁰ This observation indicated that one or both of the Michael adducts containing the 1-pyrrolidin-1-ylbuta-1,3diene moiety may be an intermediate in the formation of the pyrrolizine. Therefore we decided to investigate if this is a general reaction of 1-pyrrolidin-1-ylbuta-1,3-dienes.

We found that $(3)^{4a}$ upon refluxing in butan-1-ol for 20 h gave the crystalline pyrrolizine $(4)^{\dagger}$ (m.p. 143—144.5 °C) in a

[†] Satisfactory elemental analyses were obtained for all new compounds.

Compound	¹ H N.m.r. ^a				¹³ C N.m.r. ^a			
	$[-CH_2R^b/(ABq)]$		J	N-CH<	J	N-CH<	$-CH_2R^b$	$C(CO_2Me)$ - CH_2R^b
(4)	4.68	4.42	10	e		70.6	67.3	59.2
(6a)	3.19	2.94	15.5	$4.4 - 4.0^{d}$		81.2	43.3	55.5
(6b)	4.02	2.77	18	5.15 ^e	6 and 10	78.4	36.6	53.9
(8)	3.63	2.72	18	4.65 ^e	5 and 11	72.0	38.9	54.1

CH₂OPh

E

(3)

yield of 26%, and a mixture of stereoisomers of (3) which did not further react.[‡] The structure of (4) was proven by comparison of its n.m.r. data (Table 1) with those of pyrrolizines, the X-ray structures of which have been reported.^{4b,c} We investigated the scope of this cyclization by examining 1pyrrolidin-1-ylbuta-1,3-dienes in which one of the double bonds constitutes part of a (hetero)aromatic system. Com-

pound (5) was obtained, from the reaction of 2-pyrrolidin-1ylbenzo[b]thiophen⁷ with DMAD in methanol at room temperature, in a yield of 86%, as a 3:1 mixture of the *E*- and *Z*-isomers which were separated by column chromatography (Lobar, CH₂Cl₂-CCl₄, 4:1). The red *E*-isomer [m.p. 96.5— 98.5 °C; δ 7.07 (=CHCO₂Me)] afforded after refluxing in butan-1-ol for 15 h a 1:2 mixture of two pyrrolizines [(6a), m.p. 94—96 °C, and (6b), m.p. 137—138 °C] in an overall yield of 86%. However refluxing a solution of the *E*-isomer of (5) in toluene for 15 h gave only (6a) in a yield of 73%. When the yellow *Z*-isomer of (5) [m.p. 114—116 °C; δ 5.93 (=CHCO₂Me)] was refluxed in toluene for 15 h neither cyclization nor *Z* to *E* isomerization occurred, whereas after refluxing in butan-1-ol for 15 h the *Z*-isomer was partially converted into a 1:2 mixture of (6a) and (6b), respectively.

In relation to our work on mitomycin C analogues it was of interest to discover if compound (7) [oil; $\delta 6.07(=CHCO_2Me)$],§ in which one of the double bonds of the diene moiety is part of a benzene ring, would cyclize. Heating (7) in butan-1-ol for 3.5 h at reflux temperature gave exclusively one isomer of

[‡] There are four stereoisomers of (3) of which probably only one, the (E,E)-isomer, can cyclize (*vide infra*). The starting material was a mixture of two isomers.

[§] This compound was prepared by addition of (2-pyrrolidin-1yl-phenyl)copper to DMAD in THF.

the pyrrolizine (8) (m.p. 107–108 °C) in a yield of 74%, presumably *via* isomcrization to the *E*-isomer, which was observed as a transient intermediate [δ 6.78 (=CHCO₂Me)], and subsequent cyclization.

The cyclization of the 1-pyrrolidin-1-ylbuta-1,3-dienes to pyrrolizines can be explained by assuming a two-step process. The first step is a prototropic equilibration of (9) (Scheme 1) to give a 1,5-dipole (10) via a thermal antarafacial [1,6] hydrogen shift of one of the α -methylene protons of the pyrrolidine moiety to the $C(CO_2Me)=CHCO_2Me$ group. This concerted sigmatropic rearrangement is electronically equivalent[¶] to a thermal [1,7] hydrogen shift in a hepta-1,3,5triene.9 This type of hydrogen shift occurs via a helical transition state of the 6π -system. As can be seen from Dreiding models as well as from the NCH₂-signals in the ¹H n.m.r. spectra which show a distorted signal for the E-isomer of (5) compared with a sharp 'triplet' signal for the Z-isomer, only the E-isomer has the required helical conformation whereas the Z-isomer is much flatter. We have strong evidence that the [1,6] hydrogen shift is indeed a concerted process because after allowing both isomers of (5) to react in butan-1-[²H]ol for 15 h at reflux temperature no incorporation of deuterium was observed.** The second step is a symmetry-allowed disrotatory 1,5-dipolar cyclization.¹¹ In the 1,5-dipole, stereomutation [(10b) to (10c)] can occur depending on structure, rate of cyclization, and probably the polarity of the solvent.12 This would explain why in toluene only (6a) is formed, but in butan-1-ol both (6a) and (6b) are produced.

We believe that the *in situ* generation of a 1,5-dipole by a concerted hydrogen shift followed by a 1,5-electrocyclization is a more general process and can also account for the cyclization of a tricyanobutadienylidenebenzothiazoline derivative

- ¶ Cf. the photochemical antarafacial [1,16] hydrogen shift in the corrin system⁸ that can formally be regarded as a [1,17] hydrogen shift.
- ** Meth-Cohn *et al.*¹⁰ have proved that in the acid-catalysed cyclization of a deuteriated anil to a dihydrobenzimidazole the [1,6] deuterium shift occurs without incorporation of hydrogen in the final product.

followed by elimination of malononitrile to yield 1-benzoyl-2-cyanopyrrolo[2,1-*b*]benzothiazole as reported by Tsuge *et al.*¹³ The generation of a 1,5-dipole catalysed by base followed by a 1,5-dipolar cyclization has recently been reported by Speckamp *et al.*¹⁴ and Pandit *et al.*¹⁵

We are grateful for the financial support of this work by the 'Koningin Wilhelmina Fonds'.

Received, 23rd February 1982; Com. 197

References

- 1 R. Huisgen, H. Gotthardt, and H. O. Bayer, *Chem. Ber.*, 1970, 103, 2368.
- 2 R. Grigg, J. Kemp, G. Sheldrick, and J. Trotter, J. Chem. Soc., Chem. Commun., 1978, 109.
- 3 R. Grigg, J. Kemp, and N. Thompson, *Tetrahedron Lett.*, 1978, 2827.
- 4 (a) D. N. Reinhoudt, J. Geevers, and W. P. Trompenaars, *Tetrahedron Lett.*, 1978, 1351; (b) D. N. Reinhoudt, J. Geevers, W. P. Trompenaars, S. Harkema, and G. J. van Hummel, J. Org. Chem., 1981, 46, 424; (c) W. Verboom, G. W. Visser, W. P. Trompenaars, D. N. Reinhoudt, S. Harkema, and G. J. van Hummel, *Tetrahedron*, 1981, 37, 3525.
- 5 F. A. van der Vlugt, J. W. Verhoeven, and U.K. Pandit, *Recl. Trav. Chim. Pays-Bas*, 1970, **89**, 1258.
- 6 W. E. Noland and C. K. Lee, J. Chem. Eng. Data, 1981, 26, 91.
- 7 S. Scheithauer, H. Hartmann, and R. Mayer, Z. Chem., 1968,
 8, 181; H. Hartmann and S. Scheithauer, J. Prakt. Chem., 1969, 311, 827.
- 8 Y. Yamada, D. Miljkovic, P. Wehrli, B. Golding, P. Loeliger, R. Keese, K. Mueller, and A. Eschenmoser, *Angew. Chem.*, 1969, **81**, 301.
- 9 F. Naef, R. Decorzant, W. Thommen, B. Willhalm, and G. Ohloff, *Helv. Chim. Acta*, 1975, **58**, 1016.
- 10 R. K. Grantham, O. Meth-Cohn, and M. A. Naqui, J. Chem. Soc. C, 1969, 1438.
- 11 E. C. Taylor and I. J. Turchi, Chem. Rev., 1979, 79, 181.
- 12 R. Grigg and J. Kemp, Tetrahedron Lett., 1980, 21, 2461.
- 13 O. Tsuge, M. Tanaka, H. Shimoharada, and M. Noguchi, *Heterocycles*, 1981, 16, 1705.
- 14 W. N. Speckamp, S. J. Veenstra, J. Dijkink, and R. Fortgens, J. Am. Chem. Soc., 1981, 103, 4643.
- 15 C. B. Kanner and U. K. Pandit, Tetrahedron, 1981, 37, 3519.